- История возникновения технологии
- Как создаются модели для печати?
- 3D принтер: что это такое и как работает чертеж 3Д
- Критика и проблемы
- Разновидности технологий 3Д принтеров
- Стереолитографические установки – что это такое для 3D печати
- Лазерное спекание – LS (laser sintering)
- Что такое 3Д печать методом послойного наплавления термопласта
- Можно ли применять напечатанные изделия
- Как пользоваться и печатать
- Предварительные настройки (список)
- Из чего создаются изделия
- Виды и типы
- Виды по технологии печати
- По типу применяемых расходников
- По конструкции
- Области применения 3D печати
- Как запрограммировать 3D-принтер
- Как создают изделия
- Где можно применить 3D-принтер
- Промышленность
- Медицина
- Архитектура и строительство
- Образование
- Космос
- Малый бизнес
- Управление процессом объемной печати
- Создание цифровой модели и введение данных в печатное устройство
- Подготовка к работе
- Этап печатания
- .Дополнительная обработка объекта
- Как устроен 3D-принтер
- Чем печатает: расходные материалы
История возникновения технологии
Идея создавать объекты в пространстве появилась еще в далеком 1953, когда появились первые обыкновенные плоскостные АЦПУ. Тогда они были еще черно-белыми, но уже тогда разработчики задумывались о моделировании в объеме.
Над созданием проекта и его воплощением в жизнь работали ученые из разных стран на протяжении полувека. Первый прорыв принадлежит Чаку Халлу, который сделал машину, основанную на лазерной стереолитографии. Суть проекта в использовании лазера и жидких фотополимеров. Перемещающаяся платформа основания помогает по заданным вычислениям направлять луч и выстраивать осевые вертикальные полосы. После этого накладываются горизонтальные пластины, образуя фактуру.
Полимер затвердевает под воздействием высоких температур в слои не шире 0,2 мм. Для ровного застывания вещества на постоянной основе работают механические щеточки, обеспечивая высыхание поверхности. Уже объемный объект погружают в специальный раствор для сглаживания шероховатостей и устранения излишков. На финальной стадии образец повторно облучают. Минусом технологии был несбалансированный состав смолы – фотополимер застывал недостаточно крепко или, наоборот, моментально. Преимущество SLA-принтеров – их скорость работы, но само оборудование и расходный материал имеет высокую цену.
Скотт Крамп в конце 80-х создал абсолютно новый метод, который заключался в послойном наплавлении – FDM. Именно он лежит в основе современных приборов. Вещество, задействованное в работе, – термопластинки. Они выглядят как моток твердых нитей. Именно они наносятся слоями, повторяя контур цифровой модели.
Первый вошедший в продажу принтер появился в 1995 году. Его анонсировала компания «3D Systems». Но изделие «Actua 2100» работало медленно, в чем был его основной недостаток. И только спустя 10 лет была разработана модель «Reprap», в которой были устранены распространенные ошибки предыдущей партии. С этого момента в мире науки и производства начался этап трехмерного моделирования.
Как создаются модели для печати?
Сначала создается 3D-модель объекта при помощи программы CAD и сохраняется в специальном формате STL. Затем файл STL загружается в программу резки для принтера, например, Cura или Slic3r. Программа резки позволяет задавать физические свойства модели, такие как плотность заполнения или использование опорных конструкций.
Программа преобразует 3D-модель в G-код. Он содержит инструкции для экструдера, по которым тот должен придавать форму каждому слою модели. Код загружается в принтер, устройство запускается, и начинается печать.
3D принтер: что это такое и как работает чертеж 3Д
Объемная печать, в зависимости от сфер применения, может использовать различные принципы работы и состав полимеров, но основной технологией остается послойное наращивание пластов на объект.
Этапы проектирования:
- Создание макета на компьютере в программе автоматического проектирования, поддерживающей объемное моделирование. Софты позволяют делать расчеты на всех уровнях детали, проводить построение слоями, а также осуществлять итоговое тестирование продукта и смотреть на него со всех сторон в режиме визуализации. Такими возможностями обладают платформы от компании «ЗВСОФТ». Программное обеспечение ZW3D – это универсальная CAD/CAM система с полным функционалом для работы с 3D моделями. Есть три пакета с разным количеством инструментов: Lite, Standard и Professional. Все они идеально совместимы с принтером за счет экспорта чертежей в формате STL.
Критика и проблемы
❌ Медленно и без гарантий: печать довольно медленная, недостаточно точная. Огромная проблема в любительских принтерах — брак. Например, деталь может отклеиться от подложки прямо во время печати, и произойдёт ад. Или моторы раскалибруются, и сопло начнёт промазывать мимо нужных мест.
❌ Низкая эффективность: чтобы напечатать деталь 10 × 10 см, нужен принтер размером как минимум 50 × 50 см, который будет стоить несколько сотен долларов.
❌ Не самые прочные материалы: 3D-печать пока что ограничена пластиками и смолами. Есть отдельные технологии печати на базе металлического порошка, но если вам нужна стальная деталь — вам нужен не 3D-принтер, а нормальный токарь и станок. Но на станке можно сделать не всякую деталь.
❌ Не всегда понятно зачем. В промышленности 3D-принтеры используют для прототипирования, но в массовом производстве эти технологии не используются. Для домашнего применения тоже неясно: на 3D-принтерах печатают маленькие пластиковые штучки для любительских проектов… и всё. Очень мало случаев, когда обычный человек мог бы захотеть напечатать у себя дома что-то применимое в хозяйстве.
Разновидности технологий 3Д принтеров
На данный момент соревнуются три вида аппаратов:
- FDM (fused deposition modeling);
- LOM (laminated object manufacturing);
- SLA и STL (Stereolithography).
Также есть такие варианты, как:
- Polyjet;
- LENS;
- LS (laser sintering);
- 3DP (three dimensional printing).
Стереолитографические установки – что это такое для 3D печати
SLA или просто SL – это усовершенствованная система-прародитель. Ее истоки были положены Чаком Халлом, но на настоящий момент многие компании производят технику, основанную на принципе стереолитографии. В основу положены все те же материалы – жидкий фотополимер, запекающийся в пластик, и лазер. Луч как бы фиксирует определенные точки в емкости с жидкостью, постепенно поднимаясь снизу вверх слой за слоем. Оставшийся раствор стекает, оставляя необходимость шлифовки объекта.
Это очень эффективный, с точки зрения точности, метод. Он позволяет быстро достигнуть результата с погрешностью всего в 10 микрон. Но оборудование редко устанавливают дома, так как работа с едким веществом без соблюдения должных норм и предосторожностей чревато ожогами и токсическим отравлением организма.
Лазерное спекание – LS (laser sintering)
Метод аналогичен предыдущему, но усовершенствован за счет использования не жидкого полимера, а его сыпучего варианта. Преимущества новшества:
- В растворе нередки случаи поломки объекта еще в процессе построения, так как еще неокрепшую, но уже тяжелую конструкцию ничего не поддерживает. В порошке все иначе – деталь не может сломаться, так как она опирается на твердое вещество.
- Помимо полимера можно использовать измельченные частицы бронзы, стали, нейлона, титана.
Недостатки:
- Температура плавления очень высока, поэтому предмет долго будет остывать.
- Поверхность получается менее монолитная, в ней больше воздуха.
- Некоторые смеси опасно хранить вне камеры с азотом.
Что такое 3Д печать методом послойного наплавления термопласта
Технология LOM предусматривает наложение вырезанных по лекалу пластов из бумаги, пластмассы или алюминия и их последующее склеивание. Точные очертания рассчитываются в специализированных САПРах, которые работают с 3D моделями. Функция структурирования простых и сложных объектов в софте form•Z jr от компании «ЗВСОФТ» позволяет создавать органичные формы за счет нанесения эскиза на простую сетку и последующего детального сглаживания линий, проработки деталей вручную или автоматически.
С использованием специализированных платформ моделирование по системе LOM становится легким и удобным.
С термопластом работает также технология FDM. Ее структура заключается в подаче материала (нить из пластика) через экструдер – печатающую головку механизма. Направленный слой запекается за счет специального сопла. Так послойно происходит создание объекта снизу вверх.
Можно ли применять напечатанные изделия
Зависит от качества материала, принтера и конечного изделия. Часто домашние принтеры неточно передают форму и цвет предмета. Изделия из пластика нужно дополнительно обработать: иногда они печатаются с заусенцами и дефектами и почти всегда с ребристой поверхностью.
Изделие после и до обработки. Источник: 3D-Today
Для обработки поверхности есть несколько способов — не все подходят для домашнего применения:
- механическая обработка — шлифовка вручную, срезание заусенцев;
- химическая — погружение в ацетон, пескоструйная обработка, нанесение спецраствора кисточкой.
Как пользоваться и печатать
Самые трудные моменты в эксплуатации собранного 3D-принтера – его калибровка и создание цифровой копии модели.
Предварительные настройки (список)
До начала работы пользователь должен выполнить ряд подготовительных мероприятий:
- Подготовить место, где будет производиться печать.
- Заправить устройство расходными материалами.
- Подключить принтер к персональному компьютеру или ноутбуку.
- Проверить проходимость экструдера.
- Выполнить калибровку движения печатающей каретки.
- Загрузить модель в программу для печати.
Непосредственно в процессе:
- Следить за нагревом подложки и сопла.
- Постоянно вести наблюдение за температурным режимом.
- Управлять скоростью подачи расходника.
- Вовремя проводить замену бобин с пластиком на нить другого цвета или если она закончилась.
Это основной список с учетом, что 3д модель объекта уже готова.
Но также обратите внимание на такие «моменты»:
- Калибровка. Прежде чем запустить печать, калибруется движение печатающего механизма относительно платформы во всех направлениях с учетом расходного материала.
- Температура. Задается температура плавления пластика. Необходимо добиться того, чтобы слои пластика не накладывались друг на друга, но и пустого пространства между ними не было. Для этого разработан ряд утилит, применяются пробные модели.
- Время создания объекта. Время печати детали зависит от ее габаритов, быстродействия принтера и его точности. Чем выше точность исполнения, тем дольше печатается модель: от нескольких минут до пары часов.
Трехмерная печать плотно вошла в человеческую деятельность. Приобрести принтер или собрать его как сложный конструктор для взрослых смогут многие, как и научиться создавать трехмерные модели. Кто знает, может в скором будущем люди научатся печатать отходами из мебельного производства для экономии экологического материала. Или смогут печатать камни с необычной геометрией для строительства изысканных сооружений по принципу полигональной кладки, которые обнаруживают по всему земному шару.
Из чего создаются изделия
Вещество-основа может различаться. Самый популярный и начальный элемент – это фотополимер. Он легок в обращении, имеет низкую температуру плавления и удобен на стадии последующей обработки – шлифовки. На его замену пришел термопластик (видов ABS и PLA) – усовершенствованный материал с рядом преимуществ, в частности, он более безопасный и экологически чистый.
Также могут использоваться:
- нейлон – высокая прочность и износостойкость;
- поликарбонат – широкий спектр комфортных для изделия температур от -100 до +115 градусов;
- полиэтилен;
- поливиниловый спирт – быстро схватывается, но растворяется при соприкосновении с водой;
- целлюлоза;
- полипропилен – нетоксичный и недорогой;
- флекс – очень гибкий и эластичный;
- HIPS – удобен при необходимости многоуровневых конструкций со сложными спайками и поддержками;
- glassfil – прозрачный и невосприимчивый к ультрафиолету, механическим воздействиям и бактерицидной атаке, поэтому часто применяется в медицине;
- керамический состав – содержит только частицы керамики, но при печати создает эффект камня;
- PVA – быстрорастворяемый полимер, который подходит для временного склеивания элементов конструкции;
- PVD – тонкий пластик, который подходит для упаковочной вентилируемой продукции;
- PETG – полупрозрачный материал, образующий красивую глянцевую поверхность, подходит для элементов декора;
- полиоксиметилен – прочный как металл, но удобный в обращении и легкий;
- WOOD – достоверная имитация дерева с сохранением свойств материала-оригинала, то есть с сильными влаговпитывающими характеристиками;
- ABS Antistatic – обычный полимер с эффектом антистатика для изоляции от электричества;
- GLOW – люминесцентное вещество, способное впитывать и отдавать свет;
- металл – состав содержит в себе элементы бронзы, алюминия и других веществ, на выходе предмет, напоминающий настоящее металлическое изделие.
по программам для проектированияФОРУМпо программе ZWCADБАЗА ЗНАНИЙ
Виды и типы
Виды по технологии печати
Существует десяток технологий трехмерной печати:
- FDM. Работа основана на застывании материала при охлаждении. Раздаточная головка послойно наносит разогретый материал на основу. Слои сцепляются друг с другом и быстро остывают. Поддерживается печать несколькими цветами. К принтерам, работающим по технологии FDM, причисляют мэйкерботоподобные, кулинарные (для работы с шоколадом, глазурью) и медицинские агрегаты (печатают гелями с жидкими клетками), Stratasys-принтеры.
- Polyjet. Появившаяся в 2005 году методика создания пространственных объектов путем полимеризации фотополимера под воздействием лазерного излучения. Фотополимер применяется преимущественно в медицине: он легкий и хрупкий, а технология печати обеспечивает высочайшую детализацию прототипа.
- MJM. Многоструйное моделирование посредством подачи материала через десятки микроскопических сопел. Из-за хрупкости готовых моделей и дороговизны расходных материалов технология применяется редко, разве что для создания силиконовых форм для литья.
- Lens. Расходный материал, выдавливаемый из сопла, облучается лазером и тут же спекается. Создает объекты из металлического порошка (частицы титана, стали). Порошки могут перемешиваться, создавая сплавы уже во время печати детали.
- LOM. Ламинирование – формирование композиции из ламинированных листов. Нужные детали вырезаются лазером, накладываются и склеиваются (спрессовываются) в будущую модель. В качестве расходника применяют бумагу, алюминиевую фольгу, которая спекается под воздействием ультрафиолета, пластик. Преимущество метода – копеечная цена расходников (бумаги).
- SLA. Стереолитография или фотополимеризация – прототип выращивается на помещенной в жидкую ванну сетке. Сначала ее покрывает слой вещества толщиной до 0,13 мм (разрешение). Лазер сверху обрабатывает те участки полимера, которые должны затвердеть. Платформа опускается на 0,05-0,13 мм в зависимости от разрешения и процесс повторяется. Деталь нуждается в постобработке – шлифовании, иногда в обработке в ультрафиолетовой духовке. Не позволяет печатать двумя материалами или цветами.
- LCD. Ультрафиолетовая светодиодная матрица засвечивает фотополимерный материал через жидкокристаллический экран. Последний управляет степенью поляризации света по всей своей площади, формирую матрицу будущего слоя детали.
- DLP. Вид SLA-печати, где в качестве исходников применяются жидкие фотополимерные смолы. Для полимеризации (отверждения) полимера применяется обычный видимый свет. Модель может формироваться как на поднимающейся, так и на опускающейся платформе.
- SLS. Относится к методам создания прототипов на базе выровненного слоя порошка, который спекается лазерным лучом. Технология позволяет работать с керамическим, металлическим порошками, стеклом, пластиком, получать мелкие и сложные детали. Не спекшийся порошок минимизирует количество расходуемых материалов.
- EBM — электронно-лучевая плавка порошка металла в вакуумной камере. Для формирования модели задействуется металлическая глина: порошок металла, органический клей и вода. Из-за нагревания смеси вода с клеем испаряются, а частицы стружки сплавляются.
- 3DP. Трехмерная струйная печать. Заключается в чередовании нанесения слоев порошка и клея. В итоге получается модель из материала, схожего на гипс. Поддерживает многоцветную печать, в качестве порошка применяется резина, пластик, дерево, сахар.
- Цветные. К цветным относят следующие методы: FDM, 3DP, EBF, LOM, MJM. Для формирования цветных прототипов нужны аппараты с несколькими экструдерами. Второй метод – сублимация – нагрев красителя в нужных местах до его испарения.
По типу применяемых расходников
В качестве расходников применяется несколько материалов.
Порошки | Печатающая головка наносит на подложку слой клея в нужных местах, валик – слой порошка (металлической пудры), спекаемого с веществом. |
Гипс | Предыдущий вариант, где вместо металлического порошка применяют гипс, шпаклевка, цемент обязательно со связующим компаундом. |
Полимеры | Жидкие фотополимеры затвердевают под воздействием электромагнитных излучений (метод SLA). Расплавленные пластиковые нити (PLA, PVA, ABS) послойно наносятся на подложку и шустро затвердевают. |
Воск | Доступный легко плавящийся материал для получения высококачественных деталей, прост в работе. |
По конструкции
Различают несколько конструкций 3D-принтеров.
- RepRap. Самовоспроизводящийся аппарат, способен печатать детали, необходимые для производства собственных копий. С минимальными затратами создают 3D-принтеры для массовой эксплуатации. Поставляются как набор металлических комплектующих без пластиковых элементов (их можно напечатать), а порой, и электроники. Требуют много времени для сборки, дешевые.
- DIY-kit. Аппараты поставляются в виде конструктора с инструкцией по сборке. Для сборки принтера придется несколько часов или дней потрудиться. Тем более многие соединения «защищены» от неправильного подключения. В качестве расходников применяются пластики, иные полимеры с невысокой температурой плавления. Преимущества: полная комплектация, после сборки сможете устранять часть неполадок самостоятельно. Стоит дешевле, чем собранная модель.
- Готовые. Готовые к эксплуатации модели с высоким разрешением и закрытой рабочей камерой. Работают с нейлоном и пластиком. Обойдутся по цене около $1 тыс. и более.
- Коммерческие и промышленные. Промышленные аппараты способны печатать металлом, гелями с живыми клетками, полимерами с разными свойствами: усиленная механическая прочность, растворимость в воде. Применяются в производстве, аэрокосмической сфере, ювелирном деле, кулинарии, литье пресс-форм.
Области применения 3D печати
Сфер, где реализуется новая технология очень много, самые популярные из них:
- Медицина. Давно началось производство протезов по индивидуальным параметрам. Такие искусственные части тела по виду и ощущениям практически идентичны натуральным.
- Лекарственные препараты. За материал берется биологически активная добавка. Таким образом восполняется в точном количестве необходимый элемент.
- Машиностроение и техника. Запасные части и сложные в производстве узлы стало легче сделать с помощью печати, чем задействовать несколько цехов.
- Элементы одежды и обуви. Ранее было налажено производство застежек и декоративных частей, но с появлением тончайшего полимера начали выпускать целые модели.
- Предметы искусства.
- Биопечать – новое веяние в медицине. Работы проводятся с использованием аналогичных живым тканей.
Как запрограммировать 3D-принтер
Краткая инструкция по настройке принтера:
- Выбрать 3D-модель. Изделие можно нарисовать самому в специальном CAD-редакторе или найти готовый чертеж — в интернете полно моделей разной сложности.
- Подготовить 3D-модель к печати. Это делают методом слайсинга (slice — часть). К примеру, чтобы распечатать игрушку, ее модель нужно с помощью программ-слайсеров «разбить» на слои и передать их на принтер. Проще говоря, слайсер показывает принтеру, как печатать предмет: по какому контуру двигаться печатной головке, с какой скоростью, какую толщину слоев делать.
- Передать модель принтеру. Из слайсера 3D-чертеж сохраняется в файл под названием G-code. Компьютер загружает файл в принтер и запускает 3д-печать.
- Наблюдать за печатью.
Как создают изделия
За создание трехмерного изделия отвечает аддитивный процесс 3д-печати — это когда при изготовлении предмета слои материала накладываются друг на друга, снизу вверх, пока не получится копия формы в чертеже. Так печатают изделия из пластика. А фотополимерная печать работает по технологии стереолитографии (SLA): под воздействием лазерного излучателя фотополимеры затвердевают. Кроме пластика и фотополимерных смол, современные 3D-принтеры работают с металлоглиной и металлическим порошком.
Печать состоит из непрерывных циклов, которые повторяются один за другим — на один слой материала наносится следующий, и печатающая головка двигается, пока на рабочей поверхности не окажется готовый предмет. Отходы печати принтер сам удаляет с рабочего стола.
Где можно применить 3D-принтер
Потенциал аддитивных технологий уже сейчас сделал возможным их применение в различных сферах человеческой жизни.
Промышленность
Использование систем 3д печатания в производственных процессах стало обыденностью. Изготовление моделей и прототипов готовых продуктов, позволяющих оценить их реальные характеристики. Производство сложных формовочных форм, используемых для изготовления нестандартных деталей. Изготовление запасных частей агрегатов и механизмов для быстрого ремонта. Мелкосерийное производство уникальных изделий (например, частей ракетных двигателей) и т.д.
Медицина
Получение сложных форм – копий недостающих частей человеческого скелета (отсутствующие кости черепа, раздробленные кости и т.д.). По данным формам производятся элементы, которые имплантируются в тело человека. Проведение эксперименты по печатанию органов человека (почки, щитовидной железы), которые пересаживались в организм человека и приживались. Изготовление протезов конечностей.
Архитектура и строительство
Изготовление трехмерных макетов строений для презентаций архитектурных проектов.
Появление технологии прототипирования жилых строений. С ее помощью можно за несколько часов напечатать дом, строительство которого обычными методами занимает несколько дней
Образование
Получение учебных пособий, помогающих достичь нового уровня в образовании. Изготовление объектов сложных форм, являющихся, например, графическим решением алгебраических уравнений. Развивает пространственное мышление учащихся.
Космос
Предложен проект, в котором 3Д-печатные системы будут применены в космосе: с их помощью предполагается построить лунную базу, причем в качестве рабочего вещества планируется применить лунный грунт.
Малый бизнес
Работа на 3Д принтерах позволяет создавать уникальные предметы дизайна, изготавливать миниатюры с участием напечатанных кукол, имеющих портретное сходство с заказчиками, производить аксессуары для одежды по индивидуальным заказам…. Продолжать можно бесконечно. Аддитивные технологии позволяют предпринимателю, обладающему творческим подходом к делу, уверенно найти свою нишу в бизнесе.
Управление процессом объемной печати
Процесс получения готового продукта на 3D печатном устройстве — физическая материализация его компьютерной модели, созданной специальным программным обеспечением. Управление процессом трехмерного печатания делятся на несколько этапов.
Создание цифровой модели и введение данных в печатное устройство
Для цифровой обработки объекта необходимо специальное программное обеспечение («3D Studio Max», «AutoCAD» и др.). Если навыки работы с программами отсутствуют, лучше обратиться к специалисту. Процесс создания модели медленный и может занять несколько дней.
Можно воспользоваться специальным 3D-сканером, однако качество виртуальной модели снизится.
Если изготавливаемый объект — типовая вещь, можно поискать информацию в Интернете, на специализированных сайтах. Цифровую модель сохраняется в формате STL.
Затем с помощью специализированной программы-слайсера генерируется G-код – система команд, управляющих движением печатных элементов устройства. Интерфейс программ прост и не вызывает сложностей при использовании.
Подготовка к работе
Этап зависит от типа печатного устройства. Например, перед началом работы FDM-системы на рабочий стол устройства клеится специальная пленка и загружается бобина с пластиковой нитью. Тип и цвет пластика выбирается в зависимости от характеристик готового продукта. Проверяется наличие загрязнений и механических повреждений нити — это влияет на качество получаемого изделия.
Этап печатания
Производится самостоятельно. Необходимо следить, чтобы слои наносились на объект равномерно, не было застывания полимерной нити или ее излишней пластичности. При необходимости вносится корректировка в настройки устройства.
.Дополнительная обработка объекта
При необходимости проводится дополнительная обработка: обдирка и полировка готового продукта. Если при печатании объекта сложной формы изготавливались поддерживающие конструкции (необходимые, чтобы избежать разрушения моделируемого объекта) необходимо их удаление и полировка мест соединения.
Как устроен 3D-принтер
В основном принтеры трехмерной печати состоят из одинаковых деталей и по устройству похожи на обычные принтеры. Главное отличие — очевидное: 3D-принтер печатает в трех плоскостях, и кроме ширины и высоты появляется глубина.
Вот из каких деталей состоит 3D-принтер, не считая корпуса:
- экструдер, или печатающая головка — разогревает поверхность, с помощью системы захвата отмеряет точное количество материала и выдавливает полужидкий пластик, который подается в виде нитей;
- рабочий стол (его еще называют рабочей платформой или поверхностью для печати) — на нем принтер формирует детали и выращивает изделия;
- линейный и шаговый двигатели — приводят в движение детали, отвечают за точность и скорость печати;
- фиксаторы — датчики, которые определяют координаты печати и ограничивают подвижные детали. Нужны, чтобы принтер не выходил за пределы рабочего стола, и делают печать более аккуратной;
- рама — соединяет все элементы принтера.
Чем печатает: расходные материалы
Основные расходные материалы для трехмерных моделей – пластик и фотополимер.
- АБС пластик. Не токсичен, не имеет запаха, обладает высокой ударопрочностью, термостойкостью и эластичностью. Плавится при температуре около 245° C. Продается в виде порошка или цветных нитей. Не переносит прямых солнечных лучей, не позволяет получать прозрачные модели. Растрескивается, расслаивается, острые углы, тонкие выступы деформируются. При работе нужна вентиляция.
- ПЛА-пластик. Полилактид – экологически чистый пластик, производимый из остатков кормовых культур: свеклы, кукурузы. Приятно пахнет при расплавлении. Модели со временем разлагаются в теплых помещениях, дорогой, по сравнению с АБС-пластиком. При механическом воздействии сгибается, сжимается, разрушается вследствие падений. При температуре от 600 C теряет форму.
- PET. Распространенный полимер, встречающийся в бутылках из-под напитков и воды, пищевых контейнерах. Для 3D-принтеров применяется модификация PETG – пластик чище, менее хрупкий. Впитывает влагу, а потому нуждается в хранении в сухих помещениях. Несмотря на механическую стойкость, легко царапается, противостоит термическим воздействиям.
- Нержавейка. Печатает «долгоживущие» изделия, которые противостоят коррозии – статуэтки, узлы механизмов, брелоки. Наряду с нержавейкой применяются алюминий, латунь, медь, бронза. Прототипы нуждаются в постобработке.
- Дерево. Дорогой и эстетичный материал, состоящий из полимерной основы с добавкой деревянных волокон (стружки, тирсы) кедра, сосны, березы. Встречаются и экзотические образцы с частицами черешни, кокоса, пробкового дерева, бамбука. Изделия пахнут деревом, после шлифовки практически не отличаются от столярных. Актуально, когда внешний вид важнее точности и цены.
- Смолы. Дорогой расходник для получения гладких прочных моделей с высокой детализацией. Используется в многоструйных принтерах (MJP) и принтерах лазерной стереолитографии. Смолы бывают жесткими, эластичными, матовыми, прозрачными, цветными, термостойкими. Под воздействием солнечного света фотополимерная смола теряет прозрачность. Отличаются гладкой поверхностью и простотой постобработки.
- Нейлон. Аналог ABS-пластика с повышенной до 320°C температурой плавления, гигроскопичностью и токсичностью. Долго остывает и требует экструдера с шипами. Используется для печати движущихся деталей.